Heaters are appliances whose purpose is to generate heat (i.e. warmth) for the building. This can be done via central heating. Such a system contains a boiler, furnace, or heat pump to heat water, steam, or air in a central location such as a furnace room in a home, or a mechanical room in a large building. The heat can be transferred by convection, conduction, or radiation.
When natural gas, propane or heating oil are burned in a furnace, the resulting hot combustion gasses by burning natural gas, propane or heating oil circulate through a heat exchanger. The heat exchanger will, in turn, release that heat to be circulated by the furnace’s blower. The flue gas then travels through the flue vent, which carries the gas outside of the home. When a heat exchanger is cracked, it generally will require a complete system replacement. That is one of the reasons why we highly recommend annual preventive maintenance on your home’s furnace – this preventative furnace inspection and maintenance can greatly prolong the life of your home heating system.
Even with the best air conditioning repair service Phoenix can offer, an AC unit that has reached the end of its shelf life must be replaced. If you are ready to upgrade or replace that aging system, call us now for a free estimate, or check out our AC Unit Replacement section. In addition to offering our own Precision Line with the best warranty available in the industry, we also partner with industry leaders to offer the highest quality equipment at the best possible price, and we personally stand behind all of our new equipment installations. 

Ground source, or geothermal, heat pumps are similar to ordinary heat pumps, but instead of transferring heat to or from outside air, they rely on the stable, even temperature of the earth to provide heating and air conditioning. Many regions experience seasonal temperature extremes, which would require large-capacity heating and cooling equipment to heat or cool buildings. For example, a conventional heat pump system used to heat a building in Montana's −70 °F (−57 °C) low temperature or cool a building in the highest temperature ever recorded in the US—134 °F (57 °C) in Death Valley, California, in 1913 would require a large amount of energy due to the extreme difference between inside and outside air temperatures. A few feet below the earth's surface, however, the ground remains at a relatively constant temperature. Utilizing this large source of relatively moderate temperature earth, a heating or cooling system's capacity can often be significantly reduced. Although ground temperatures vary according to latitude, at 6 feet (1.8 m) underground, temperatures generally only range from 45 to 75 °F (7 to 24 °C). 

Vredevoogd Heating & Cooling Grand Rapids employs more than 80 people who are proud to work under the Vredevoogd Heating & Cooling banner. Each team member shares our company values for service excellence. All of our employees are intensely screened and background checked so that you have peace of mind when they enter your home. Moreover, our technicians are certified to work in the HVAC industry and provide the level of expertise that our customers expect from Vredevoogd Heating & Cooling. We back our technicians’ work and continue to make training a priority so that all of our techs are familiar with the latest HVAC models and advances. Our customers deserve the best, so the best is what we deliver to each and every job.

Air ducts come in two forms: cool air ducts (also known as “return ducts”) and warm air ducts (also known as “supply ducts”). Warm air from the furnace enters the home through the warm air registers. No more than 20: of these warm air ducts and registers should ever be closed off – this hinders air flow and could result in the overheating of the heat exchanger, causing costly damage to you home heating system.


Absorption heat pumps are a kind of air-source heat pump, but they do not depend on electricity to power them. Instead, gas, solar power, or heated water is used as a main power source. An absorption pump dissolves ammonia gas in water, which gives off heat. Next, the water and ammonia mixture is depressurized to induce boiling, and the ammonia is boiled off, which absorbs heat from the outdoor air.[citation needed]
Your furnace's flame sensor is essentially a safety mechanism. As a thin metallic rod in front of the flame inside the unit, it's sole purpose is to confirm that your gas valves only open when a flame actually exists to burn that gas. When the flame sensor stop working, on the other hand, gas leaks can occur. To repair your furnace's flame sensor, expect to spend between $80 and $250. Even a full replacement of this part typically does not go above that range.

At times, malfunctions strike without warning.  These problems rarely stick to regular business hours.  When your comfort, safety, and well-being is at stake, don’t wait for Monday morning.  The service team from Ferran Services is available 24/7 to provide the prompt and dependable assistance you require.  Fully-stocked service trucks and extensively trained technicians allow us to handle the majority of repair requirements in a single visit.  We work on all makes and models, and our technicians do not rely on commission.  We never take advantage of your desperate situation, never sell you a product or service you don’t need, and always keep you informed.  By relying on Factory Authorized Parts, we restore system efficiency, sound levels, and longevity.

Replacing a capacitor is easy. Just take a photo of the wires before disconnecting anything (you may need a reference later on). Then discharge the stored energy in the old capacitor (Photo 4). Use needle-nose pliers to pluck one wire at a time from the old capacitor and snap it onto the corresponding tab of the new capacitor. The female crimp connectors should snap tightly onto the capacitor tabs. Wiggle each connector to see if it’s tight. If it’s not, remove the connector and bend the rounded edges of it so it makes a tighter fit on the tab. When you’ve swapped all the wires, secure the new capacitor (Photo 5).
×