The blower assembly is located between your main furnace and the cold air return. The blower is responsible for pulling air from your home and then sending it through the furnace and the heat exchanger. The air gets circulated throughout the home via the duct work. The furnace’s air filter is contained within the blower compartment. Regular-style filters should be replaced or cleaned each month.


HVAC equipment is estimated to last about 15 to 20 years. Yet over the years, parts go out and need to be repaired. Heat sensors, exchangers, and ducts can become worn out. Air conditioning motors may need repairing from time to time. For repairs to your heating and air conditioning systems, and even general maintenance, let HomeAdvisor help. Enter your zip code and let us connect you with prescreened HVAC repair services near you.
Finally, don't underestimate the thermostat as a potential reason why your furnace is not working. Everything on the heating unit itself may function perfectly, but your home still will not heat right if the console you use to set the temperature doesn't communicate your input. A faulty thermostat can either be due to the wall unit itself, or the wiring that connects it to your furnace. Average thermostat repair costs are between $108 and $282, including labor. Replacement costs, of course, depend on the thermostat you choose. Visit our thermostat repair cost guide to learn more about this type of issue.
If you live in a warmer climate, your air conditioner is likely one of the most essential pieces of equipment for your home. The best course is to perform regular routine air conditioner maintenance to ensure its smooth operation during the warmest months of the year. Annual tune-ups by a professional HVAC technician will increase the lifespan of your unit. When repairs are needed, be sure to hire a technician trained and certified in HVAC repair for best results. Following these guidelines will ensure that you are comfortable and cool through the summer season.
Furnaces and thermostats are not mix-and-match appliances. Using the wrong type of thermostat with a furnace will cause operating problems and can be dangerous. Although thermostats look similar, they are designed very differently. There are numerous types of heating systems and thermostat systems and they need to be coordinated for safe and proper operation. There are three types of thermostat systems used today: millivoltage, low voltage, and line voltage.​
Natural ventilation is the ventilation of a building with outside air without using fans or other mechanical systems. It can be via operable windows, louvers, or trickle vents when spaces are small and the architecture permits. In more complex schemes, warm air is allowed to rise and flow out high building openings to the outside (stack effect), causing cool outside air to be drawn into low building openings. Natural ventilation schemes can use very little energy, but care must be taken to ensure comfort. In warm or humid climates, maintaining thermal comfort solely via natural ventilation might not be possible. Air conditioning systems are used, either as backups or supplements. Air-side economizers also use outside air to condition spaces, but do so using fans, ducts, dampers, and control systems to introduce and distribute cool outdoor air when appropriate.
Modern refrigerants have been developed to be more environmentally safe than many of the early chlorofluorocarbon-based refrigerants used in the early- and mid-twentieth century. These include HCFCs (R-22, as used in most U.S. homes before 2011) and HFCs (R-134a, used in most cars) have replaced most CFC use. HCFCs, in turn, are supposed to have been in the process of being phased out under the Montreal Protocol and replaced by HFCs such as R-410A, which lack chlorine.[14] HFCs, however, contribute to climate change problems. Moreover, policy and political influence by corporate executives resisted change.[15][16] Corporations insisted that no alternatives to HFCs existed. The environmental organization Greenpeace provided funding to a former East German refrigerator company to research an alternative ozone- and climate-safe refrigerant in 1992. The company developed a hydrocarbon mix of isopentane and isobutane, but as a condition of the contract with Greenpeace could not patent the technology, which led to its widespread adoption by other firms.[17][18][19] Their activist marketing first in Germany led to companies like Whirlpool, Bosch, and later LG and others to incorporate the technology throughout Europe, then Asia, although the corporate executives resisted in Latin America, so that it arrived in Argentina produced by a domestic firm in 2003, and then finally with giant Bosch's production in Brazil by 2004.[20][21]
Shortly thereafter, the first private home to have air conditioning was built in Minneapolis in 1914, owned by Charles Gates.[11] Realizing that air conditioning would one day be a standard feature of private homes, particularly in regions with warmer climate, David St. Pierre DuBose (1898-1994) designed a network of ductwork and vents for his home Meadowmont, all disguised behind intricate and attractive Georgian-style open moldings.[when?] This building is believed to be one of the first private homes in the United States equipped for central air conditioning.[12]
As a top provider of top-rated air conditioners and professional service, Four Seasons Heating and Air Conditioning is here to ensure that you have the cool and comfortable living environment that you deserve. Learn more about what we have to offer today by giving us a call, or request additional information now by filling out our brief online quote form!
Air changes per hour Bake-out Building envelope Convection Dilution Domestic energy consumption Enthalpy Fluid dynamics Gas compressor Heat pump and refrigeration cycle Heat transfer Humidity Infiltration Latent heat Noise control Outgassing Particulates Psychrometrics Sensible heat Stack effect Thermal comfort Thermal destratification Thermal mass Thermodynamics Vapour pressure of water
Because an air conditioner moves heat between the indoor coil and the outdoor coil, both must be kept clean. This means that, in addition to replacing the air filter at the evaporator coil, it is also necessary to regularly clean the condenser coil. Failure to keep the condenser clean will eventually result in harm to the compressor, because the condenser coil is responsible for discharging both the indoor heat (as picked up by the evaporator) and the heat generated by the electric motor driving the compressor.
Ductwork pinging or popping. If you hear a pinging or popping sound coming from metal ductwork, this may be caused by thermal expansion or by air blowing past a loose flap of metal. Track along the duct runs, listening for the sound. If you find it, make a small dent in the sheet metal to provide a more rigid surface that’s less likely to move as it heats and cools.
Your HVAC professional can also help you verify that your system is properly matched by providing you with an AHRI Certificate of Certified Product Performance upon request. The certificate verifies that the outdoor unit (condenser) and the indoor unit (evaporator) combination has been certified as a matched system by the Air Conditioning, Heating and Refrigeration Institute (AHRI). For higher efficiency systems, this certification may help you obtain a rebate from your utility or local municipality if you have to replace your unit in whole or in part. Not all areas offer a rebate, but your technician will likely be able to provide information about the certification process. Fees for performing this certification vary, but generally are relatively inexpensive.
The condensed, pressurized, and still usually somewhat hot liquid refrigerant is next routed through an expansion valve (often nothing more than a pinhole in the system's copper tubing) where it undergoes an abrupt reduction in pressure. That pressure reduction results in flash evaporation of a part of the liquid refrigerant, greatly lowering its temperature. The cold refrigerant is then routed through the evaporator. A fan blows the interior warm air (which is to be cooled) across the evaporator, causing the liquid part of the cold refrigerant mixture to evaporate as well, further lowering the temperature. The warm air is therefore cooled and is pumped by an exhaust fan/ blower into the room. To complete the refrigeration cycle, the refrigerant vapor is routed back into the compressor. In order for the process to have any efficiency, the cooling/evaporative portion of the system must be separated by some kind of physical barrier from the heating/condensing portion, and each portion must have its own fan to circulate its own "kind" of air (either the hot air or the cool air).
×