Free cooling systems can have very high efficiencies, and are sometimes combined with seasonal thermal energy storage so that the cold of winter can be used for summer air conditioning. Common storage mediums are deep aquifers or a natural underground rock mass accessed via a cluster of small-diameter, heat-exchanger-equipped boreholes. Some systems with small storages are hybrids, using free cooling early in the cooling season, and later employing a heat pump to chill the circulation coming from the storage. The heat pump is added-in because the storage acts as a heat sink when the system is in cooling (as opposed to charging) mode, causing the temperature to gradually increase during the cooling season.
Many things can go wrong with your furnace, all of which should be repaired and examined by experienced professionals. Trust Randazzo Heating, Cooling, and Fireplaces to repair and help you maintain your furnace*. We value our customers and their decisions, so we will always be honest and explain the best possible solution for you. Contact us today so we can help you out! Click Here for our warranty policy.
Natural gas furnaces operate similarly to the above, using a pilot light to ignite the burners and heat up the air. Also similar to propane gas, your average repair costs for a natural gas furnace will range anywhere from $125 for small repairs to $1,200 if you have to replace the entire heat exchanger. The difference between both options is not necessarily the actual furnace, but the type of gas used to burn through it and heat your home. As a result, the repair costs tend to be close to identical.
Clean air delivery rate is the amount of clean air an air cleaner provides to a room or space. When determining CADR, the amount of airflow in a space is taken into account. For example, an air cleaner with a flow rate of 100 cfm (cubic feet per minute) and an efficiency of 50% has a CADR of 50 cfm. Along with CADR, filtration performance is very important when it comes to the air in our indoor environment. Filter performance depends on the size of the particle or fiber, the filter packing density and depth and also the air flow rate.[31]

Consequently, this water must exit the air handler—typically through plastic pipe or a drain tube. That drain tube goes directly outside, often terminating near the compressor, or to a floor drain or to a small electric “condensate pump” located by the air handler. Where a condensate pump is used, it connects to a 1/2-inch vinyl or rubber tube that exits outdoors or to a drain.
Without proper ventilation, carbon monoxide can be lethal at concentrations of 1000 ppm (0.1%). However, at several hundred ppm, carbon monoxide exposure induces headaches, fatigue, nausea, and vomiting. Carbon monoxide binds with hemoglobin in the blood, forming carboxyhemoglobin, reducing the blood's ability to transport oxygen. The primary health concerns associated with carbon monoxide exposure are its cardiovascular and neurobehavioral effects. Carbon monoxide can cause atherosclerosis (the hardening of arteries) and can also trigger heart attacks. Neurologically, carbon monoxide exposure reduces hand to eye coordination, vigilance, and continuous performance. It can also affect time discrimination.[15]
In 1758, Benjamin Franklin and John Hadley, a chemistry professor at Cambridge University, conducted an experiment to explore the principle of evaporation as a means to rapidly cool an object. Franklin and Hadley confirmed that evaporation of highly volatile liquids (such as alcohol and ether) could be used to drive down the temperature of an object past the freezing point of water. They conducted their experiment with the bulb of a mercury thermometer as their object and with a bellows used to speed up the evaporation. They lowered the temperature of the thermometer bulb down to −14 °C (7 °F) while the ambient temperature was 18 °C (64 °F). Franklin noted that, soon after they passed the freezing point of water 0 °C (32 °F), a thin film of ice formed on the surface of the thermometer's bulb and that the ice mass was about 6 mm (1⁄4 in) thick when they stopped the experiment upon reaching −14 °C (7 °F). Franklin concluded: "From this experiment one may see the possibility of freezing a man to death on a warm summer's day."[9]
×