Clean air delivery rate is the amount of clean air an air cleaner provides to a room or space. When determining CADR, the amount of airflow in a space is taken into account. For example, an air cleaner with a flow rate of 100 cfm (cubic feet per minute) and an efficiency of 50% has a CADR of 50 cfm. Along with CADR, filtration performance is very important when it comes to the air in our indoor environment. Filter performance depends on the size of the particle or fiber, the filter packing density and depth and also the air flow rate.[31]

We relocate frequently and one of the biggest hassles of relocating to new areas is finding reputable companies that send qualified technicians to perform work when you need it, whether for annual preventative maintenance or during a house emergency. We’ve been through the process several times and always dread researching and trying new companies. This was our first HVAC call here in northern Virginia. We are in new construction and chose not to use the builder’s sub-contractor for a technician call but looked through Carrier’s website for a local business. Jeremy Garner with HVAC Unlimited responded to our service request the morning following our call. I shadowed him performing work and he was patient while I peppered him with questions. He helped expand my HVAC knowledge in order to be a better property owner of our systems. He performed the work we thought was necessary, in a timely and professional manner, and gave us options for future annual maintenance. HVAC Unlimited is definitely on our list of go-to contractors.
I had Gator install two train units a year and a half ago. They the blower motor went out on one of the units. I bought Trane because I thought I was buying quality. The warranty only covers labor for the first year. I called Gator in the morning and they were fantastic. The sent a technician out immediately and had the unit operating that day at a very reasonable price. I would recommend Gator to anyone.
The use of CFC as a refrigerant was once common, including the refrigerants R-11 and R-12 (sold under the brand name Freon-12). Freon refrigerants were commonly used during the 20th century in air conditioners due to their superior stability and safety properties. When they are released accidentally or deliberately, these chlorine-bearing refrigerants eventually reach the upper atmosphere.[61] Once the refrigerant reaches the stratosphere, UV radiation from the Sun homolytically cleaves the chlorine-carbon bond, yielding a chlorine radical. These chlorine radicals catalyze the breakdown of ozone into diatomic oxygen, depleting the ozone layer that shields the Earth's surface from strong UV radiation. Each chlorine radical remains active as a catalyst until it binds with another radical, forming a stable molecule and quenching the chain reaction.
The condensed, pressurized, and still usually somewhat hot liquid refrigerant is next routed through an expansion valve (often nothing more than a pinhole in the system's copper tubing) where it undergoes an abrupt reduction in pressure. That pressure reduction results in flash evaporation of a part of the liquid refrigerant, greatly lowering its temperature. The cold refrigerant is then routed through the evaporator. A fan blows the interior warm air (which is to be cooled) across the evaporator, causing the liquid part of the cold refrigerant mixture to evaporate as well, further lowering the temperature. The warm air is therefore cooled and is pumped by an exhaust fan/ blower into the room. To complete the refrigeration cycle, the refrigerant vapor is routed back into the compressor. In order for the process to have any efficiency, the cooling/evaporative portion of the system must be separated by some kind of physical barrier from the heating/condensing portion, and each portion must have its own fan to circulate its own "kind" of air (either the hot air or the cool air).
In 1758, Benjamin Franklin and John Hadley, a chemistry professor at Cambridge University, conducted an experiment to explore the principle of evaporation as a means to rapidly cool an object. Franklin and Hadley confirmed that evaporation of highly volatile liquids (such as alcohol and ether) could be used to drive down the temperature of an object past the freezing point of water. They conducted their experiment with the bulb of a mercury thermometer as their object and with a bellows used to speed up the evaporation. They lowered the temperature of the thermometer bulb down to −14 °C (7 °F) while the ambient temperature was 18 °C (64 °F). Franklin noted that, soon after they passed the freezing point of water 0 °C (32 °F), a thin film of ice formed on the surface of the thermometer's bulb and that the ice mass was about 6 mm (1⁄4 in) thick when they stopped the experiment upon reaching −14 °C (7 °F). Franklin concluded: "From this experiment one may see the possibility of freezing a man to death on a warm summer's day."[9]
Though Harrison had commercial success establishing a second ice company back in Sydney in 1860, he later entered the debate over how to compete against the American advantage of ice-refrigerated beef sales to the United Kingdom. He wrote: "Fresh meat frozen and packed as if for a voyage, so that the refrigerating process may be continued for any required period", and in 1873 prepared the sailing ship Norfolk for an experimental beef shipment to the United Kingdom. His choice of a cold room system instead of installing a refrigeration system upon the ship itself proved disastrous when the ice was consumed faster than expected.[citation needed]

The heat-exchanger cools the air that is being forced through it by the furnace blower. As the warm air comes in contact with this cool surface the water in the air condenses. By pulling the water molecules from the air. According to the psychometric chart[42] as relative humidity decreases in order to feel cool you will have to lower the temperature even more. A common way to counteract this effect is by installing a whole-home humidifier.[43] Similarly, installing a high efficient system this need to turn the temperature down wont have such and influence on your energy costs.
Moisture around or near your system—It’s possible that water pools next to your AC unit may just be caused by a blocked drain tube. A refrigerant leak, however, could be the reason for the excessive moisture, and leaking refrigerant can cause harm to the unit, humans, and the environment. Only technicians that provide the best air conditioner repair Phoenix has to offer are qualified to deal with refrigerant leaks.
In very dry climates, evaporative coolers, sometimes referred to as swamp coolers or desert coolers, are popular for improving coolness during hot weather. An evaporative cooler is a device that draws outside air through a wet pad, such as a large sponge soaked with water. The sensible heat of the incoming air, as measured by a dry bulb thermometer, is reduced. The temperature of the incoming air is reduced, but it is also more humid, so the total heat (sensible heat plus latent heat) is unchanged. Some of the sensible heat of the entering air is converted to latent heat by the evaporation of water in the wet cooler pads. If the entering air is dry enough, the results can be quite substantial.
Because an air conditioner moves heat between the indoor coil and the outdoor coil, both must be kept clean. This means that, in addition to replacing the air filter at the evaporator coil, it is also necessary to regularly clean the condenser coil. Failure to keep the condenser clean will eventually result in harm to the compressor, because the condenser coil is responsible for discharging both the indoor heat (as picked up by the evaporator) and the heat generated by the electric motor driving the compressor.
My experience with Cody & Sons was an A+! I am always concerned with these companies taking advantage and charging more than they should. My technician, Mike, was on time, extremely professional and really knew his job. Prior to Cody & Sons, I had 5 other name brand HVAC companies service my furnace but no one could tell me why I smelled gas each time I turned my unit on. Several tried to sell me a new furnace. Mike thoroughly examined my unit and determined what the problem was. He then patiently explained it all to me in laymen's terms. I approved the work and Mike took care of it. I can't express the relief I feel knowing that my furnace is safe again and I am not inhaling fumes!!! From start to finish Mike took about an hour. The price I was charged was very fair! I am happy to say that I have finally found my go to HVAC company. THANK YOU, MIKE and Cody & Sons!!!
In 1902, the first modern electrical air conditioning unit was invented by Willis Carrier in Buffalo, New York.[citation needed] After graduating from Cornell University, Carrier found a job at the Buffalo Forge Company. There, he began experimenting with air conditioning as a way to solve an application problem for the Sackett-Wilhelms Lithographing and Publishing Company in Brooklyn, New York. The first air conditioner, designed and built in Buffalo by Carrier, began working on 17 July 1902.[citation needed]
The condensed, pressurized, and still usually somewhat hot liquid refrigerant is next routed through an expansion valve (often nothing more than a pinhole in the system's copper tubing) where it undergoes an abrupt reduction in pressure. That pressure reduction results in flash evaporation of a part of the liquid refrigerant, greatly lowering its temperature. The cold refrigerant is then routed through the evaporator. A fan blows the interior warm air (which is to be cooled) across the evaporator, causing the liquid part of the cold refrigerant mixture to evaporate as well, further lowering the temperature. The warm air is therefore cooled and is pumped by an exhaust fan/ blower into the room. To complete the refrigeration cycle, the refrigerant vapor is routed back into the compressor. In order for the process to have any efficiency, the cooling/evaporative portion of the system must be separated by some kind of physical barrier from the heating/condensing portion, and each portion must have its own fan to circulate its own "kind" of air (either the hot air or the cool air).

Ground source, or geothermal, heat pumps are similar to ordinary heat pumps, but instead of transferring heat to or from outside air, they rely on the stable, even temperature of the earth to provide heating and air conditioning. Many regions experience seasonal temperature extremes, which would require large-capacity heating and cooling equipment to heat or cool buildings. For example, a conventional heat pump system used to heat a building in Montana's −70 °F (−57 °C) low temperature or cool a building in the highest temperature ever recorded in the US—134 °F (57 °C) in Death Valley, California, in 1913 would require a large amount of energy due to the extreme difference between inside and outside air temperatures. A few feet below the earth's surface, however, the ground remains at a relatively constant temperature. Utilizing this large source of relatively moderate temperature earth, a heating or cooling system's capacity can often be significantly reduced. Although ground temperatures vary according to latitude, at 6 feet (1.8 m) underground, temperatures generally only range from 45 to 75 °F (7 to 24 °C).
When your furnace isn’t regularly serviced it can operate less efficiently. This increases your energy bills and also prevents your furnace from keeping your home as warm as you like. Keep your furnace properly maintained with regular service. The national average furnace service cost is between $60 and $80. Companies may offer tuneup specials that cover all the necessary testing, tightening, measuring and cleaning to keep your equipment running at top efficiency. If you have a newer system, furnace service costs may be covered by your warranty. Outside of warranty, a basic tuneup might start at $58 and a more advanced maintenance cleaning could be over $120. Here are some signs your furnace may need service:
Before opening the electrical cover on the A/C unit, be sure to shut off all power to the compressor unit and the indoor furnace or air handler, and verify that it is off. Note that this may mean shutting off a circuit breaker that serves the furnace and air handler, and then, near the compressor, pulling out the disconnect block (or shutting off the 220-volt power) to the outdoor compressor.
×