Air conditioners often use a fan to distribute the conditioned air to an occupied space such as a building or a car to improve thermal comfort and indoor air quality. Electric refrigerant-based AC units range from small units that can cool a small bedroom, which can be carried by a single adult, to massive units installed on the roof of office towers that can cool an entire building. The cooling is typically achieved through a refrigeration cycle, but sometimes evaporation or free cooling is used. Air conditioning systems can also be made based on desiccants (chemicals which remove moisture from the air) and subterraneous pipes that can distribute the heated refrigerant to the ground for cooling.[2]
A pinging or popping sound coming from the duct work can come from thermal expansion—the ductwork expanding and contracting as it heats and cools.  Or, air blowing past a loose flap of metal can make the sound. Track along the duct runs, listening for the sound. If you locate it, make a small dent in the sheet metal to provide a more rigid surface that’s less likely to move as it heats and cools.

Demand controlled kitchen ventilation (DCKV) is a building controls approach of slowing down kitchen exhaust fans and subsequent supply air in response to the actual cooking loads in a commercial kitchen. Traditional commercial kitchen ventilation systems operate at 100% fan speed independent of the volume of cooking activity and DCKV technology changes that to provide significant fan energy and conditioned air savings. By deploying smart sensing technology, both the exhaust and supply fans can be controlled to capitalize on the Law of Affinity for motor energy savings, reduce makeup air heating and cooling energy, increasing safety and reducing ambient kitchen noise levels.[30]
The most recognized standards for HVAC design are based on ASHRAE data. The most general of four volumes of the ASHRAE Handbook is Fundamentals; it includes heating and cooling calculations. Each volume of the ASHRAE Handbook is updated every four years. The design professional must consult ASHRAE data for the standards of design and care as the typical building codes provide little to no information on HVAC design practices; codes such as the UMC and IMC do include much detail on installation requirements, however. Other useful reference materials include items from SMACNA, ACGIH, and technical trade journals.
First, it is wise to stick with a company that specializes in HVAC services. While many general handyman companies may do some things with AC units, a company that specializes in air conditioning and heating is always a better option. Because air conditioning repairs can be quite costly, depending on the particular problem, it is best to work with highly trained HVAC professionals to ensure quality work.
Inside the unit, the air passes over the evaporator coil first, and is cooled and dehumidified. The now dehumidified, cold air then passes over the condenser coil where it is warmed up again. Then the air is released back into the room. The unit produces warm, dehumidified air and can usually be placed freely in the environment (room) that is to be conditioned.
I was disappointed with the pressure of a tub and shower that were plumbed with 1/2 supply lines (2nd floor). Could be low pressure from the street, but I want to replace with 5/8. Plus, I'd like to have 2 back to back showers, one inside and one outside. So, I had intended to bring a 1 supply to both, then branch up to valves and shower head with 5/8. Finally, I thought pressure from the street was typically 55 to 70 psi and I am concerned if pvc can take that.Any thoughts?
Because an air conditioner moves heat between the indoor coil and the outdoor coil, both must be kept clean. This means that, in addition to replacing the air filter at the evaporator coil, it is also necessary to regularly clean the condenser coil. Failure to keep the condenser clean will eventually result in harm to the compressor, because the condenser coil is responsible for discharging both the indoor heat (as picked up by the evaporator) and the heat generated by the electric motor driving the compressor.

In 1820, English scientist and inventor Michael Faraday discovered that compressing and liquefying ammonia could chill air when the liquefied ammonia was allowed to evaporate. In 1842, Florida physician John Gorrie used compressor technology to create ice, which he used to cool air for his patients in his hospital in Apalachicola, Florida. He hoped to eventually use his ice-making machine to regulate the temperature of buildings. He even envisioned centralized air conditioning that could cool entire cities. Though his prototype leaked and performed irregularly, Gorrie was granted a patent in 1851 for his ice-making machine. Though his process improved the artificial production of ice, his hopes for its success vanished soon afterwards when his chief financial backer died and Gorrie did not get the money he needed to develop the machine. According to his biographer, Vivian M. Sherlock, he blamed the "Ice King", Frederic Tudor, for his failure, suspecting that Tudor had launched a smear campaign against his invention. Dr. Gorrie died impoverished in 1855, and the dream of commonplace air conditioning went away for 50 years.[citation needed]
Air conditioning can also be provided by a process called free cooling which uses pumps to circulate a coolant (typically water or a glycol mix) from a cold source, which in turn acts as a heat sink for the energy that is removed from the cooled space. Common storage media are deep aquifers or a natural underground rock mass accessed via a cluster of small-diameter boreholes, equipped with heat exchanger. Some systems with small storage capacity are hybrid systems, using free cooling early in the cooling season, and later employing a heat pump to chill the circulation coming from the storage. The heat pump is added because the temperature of the storage gradually increases during the cooling season, thereby declining its effectiveness.
This job involves removing the access panel, loosening a couple of bolts that hold the blower motor at the proper tension, and adjusting its distance or realigning the belt. In many cases, it’s a good idea to remove the belt and buy a replacement at a home center. Last, when reinstalling the belt, be careful not to over-tighten it; this can wear out the motor bearings.
Here at Brothers Plumbing, Heating and Electric, we have a Home Care Club that provides members with a number of benefits. These benefits include: 2 year warranty on all work (drain work is excluded), transferable club membership, no “show up” fees, priority service, 10% discount on repairs, quarterly newsletters, carefree scheduling (we will contact you and remind you when you need service), 2 free furnace/air conditioner filter changes, exclusive coupons, quarterly drawings, 4 on-going safety checks, and a 100% satisfaction guarantee. So if you’d like to join our Home Care Club, then simply give us a call or click here today.
1) Change your filter. The simplest and most effective way to keep your AC running smoothly is changing your filter once a month. By regularly changing your filter, you reduce a lot of the burden on your system. A dirty or clogged filter makes your air conditioner work much harder than does a clean filter. Changing your filters regularly is easy on your budget and easy on your system as well. It will lower your utility bill and extend the life of your AC.
×