The selection of the working fluids (refrigerants) has a significant impact not only on the performance of the air conditioners but on the environment as well. Most refrigerants used for air conditioning contribute to global warming, and many also deplete the ozone layer.[60] CFCs, HCFCs, and HFCs are potent greenhouse gases when leaked to the atmosphere.
Leave gambling to the casinos! When it’s 110 degrees in the shade, you don’t want take a chance with a broken AC. Go beyond a tune-up and Rejuuuvenate! your air conditioner back to factory fresh conditions. Your AC shouldn’t sound like a slot machine, so we believe in eliminating every squeak, rattle and hum because if you don’t, bigger problems will come. So trust our highly trained, screened, and “Sadie Certified” technicians to make you the coolest act on the Strip!
Nobody wants to deal with a broken furnace in winter. Lucky for you, our Denver furnace repair specialists are available 7 days a week. Don’t face cold winter nights without a well functioning furnace. Contact us, your Denver furnace repair company so that we can diagnose the problem and set you up with a preventative maintenance package so we can catch problems before they occur. Click HERE to learn more about our furnace related services.
There is nothing worse than having your air conditioner break in the middle of a long, hot summer. You can ensure your air conditioning unit stays in working order all year long with regular service. Sometimes, however, repairs are necessary whether it’s fixing the evaporator, capacitor, or condenser or recharging the refrigerant. Most air conditioner repairs cost between $163 and $533 with most homeowners reporting that they spend about $347. If you do need a repair, here is some information to help you get it done quickly, professionally, and economically.
Turn off the gas supply valve, typically located by your gas meter on the gas inlet pipe. Turn off the gas by rotating the valve one quarter turn with an adjustable wrench. When the gas is off,  the valve’s oblong stem points perpendicular to the inlet pipe. Then call your gas utility or the fire department from a remote location. Do not return to your home until you know it is safe.

Evaporative coolers, sometimes called "swamp coolers", do not have a compressor or condenser. Liquid water is evaporated on the cooling fins, releasing the vapor into the cooled area. Evaporating water absorbs a significant amount of heat, the latent heat of vaporisation, cooling the air. Humans and animals use the same mechanism to cool themselves by sweating.
In 1820, English scientist and inventor Michael Faraday discovered that compressing and liquefying ammonia could chill air when the liquefied ammonia was allowed to evaporate. In 1842, Florida physician John Gorrie used compressor technology to create ice, which he used to cool air for his patients in his hospital in Apalachicola, Florida. He hoped to eventually use his ice-making machine to regulate the temperature of buildings. He even envisioned centralized air conditioning that could cool entire cities. Though his prototype leaked and performed irregularly, Gorrie was granted a patent in 1851 for his ice-making machine. Though his process improved the artificial production of ice, his hopes for its success vanished soon afterwards when his chief financial backer died and Gorrie did not get the money he needed to develop the machine. According to his biographer, Vivian M. Sherlock, he blamed the "Ice King", Frederic Tudor, for his failure, suspecting that Tudor had launched a smear campaign against his invention. Dr. Gorrie died impoverished in 1855, and the dream of commonplace air conditioning went away for 50 years.[citation needed]
If you hear clicking that is followed by a hum or buzz, you’re probably hearing the fan motor attempting to start without the boost it needs from the capacitor. You can almost always conclude that the capacitor has failed. Sometimes you can get the compressor fan spinning (clockwise) by pushing it with a thin stick or long screwdriver poked through the grille. But the chances are good that this might work for one cycle, but the capacitor will fail next time the AC goes on. It’s best to replace the capacitor.
Ground source, or geothermal, heat pumps are similar to ordinary heat pumps, but instead of transferring heat to or from outside air, they rely on the stable, even temperature of the earth to provide heating and air conditioning. Many regions experience seasonal temperature extremes, which would require large-capacity heating and cooling equipment to heat or cool buildings. For example, a conventional heat pump system used to heat a building in Montana's −70 °F (−57 °C) low temperature or cool a building in the highest temperature ever recorded in the US—134 °F (57 °C) in Death Valley, California, in 1913 would require a large amount of energy due to the extreme difference between inside and outside air temperatures. A few feet below the earth's surface, however, the ground remains at a relatively constant temperature. Utilizing this large source of relatively moderate temperature earth, a heating or cooling system's capacity can often be significantly reduced. Although ground temperatures vary according to latitude, at 6 feet (1.8 m) underground, temperatures generally only range from 45 to 75 °F (7 to 24 °C).

Replacing a capacitor is easy. Just take a photo of the wires before disconnecting anything (you may need a reference later on). Then discharge the stored energy in the old capacitor (Photo 4). Use needle-nose pliers to pluck one wire at a time from the old capacitor and snap it onto the corresponding tab of the new capacitor. The female crimp connectors should snap tightly onto the capacitor tabs. Wiggle each connector to see if it’s tight. If it’s not, remove the connector and bend the rounded edges of it so it makes a tighter fit on the tab. When you’ve swapped all the wires, secure the new capacitor (Photo 5).
×